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Abstract. Recently Hachimi and Aghezzaf introduced the notion of (F,α, ρ, d)-type I
functions, a new class of functions that unifies several concepts of generalized type I functions.
Here, we extend the concepts of (F,α, ρ, d)-type I and generalized (F,α, ρ, d)-type I
functions to the continuous case and we use these concepts to establish various sufficient
optimality conditions and mixed duality results for multiobjective variational problems. Our
results apparently generalize a fairly large number of sufficient optimality conditions and
duality results previously obtained for multiobjective variational problems.
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1. Introduction

Investigation on sufficiency and/or duality has been one of the most
attracting topics in the theory of multiobjective problems. In multiobjective
(static) programming problems, convexity plays an important role in deriv-
ing sufficient optimality conditions and duality results. Several classes of
functions have been defined for the purpose of weakening the limitations of
convexity in nonlinear programming problems. The concept of type I func-
tions was first introduced by Hanson and Mond [12] as a generalization
of convexity. Subsequently, Rueda and Hanson [22] have defined pseudo-
type I and quasi-type I functions and have obtained sufficient optimality
conditions involving these functions. Kaul et al. [13] obtained optimality
conditions and duality results for multiobjective programming problems
involving type I and generalized type I functions. Later, Aghezzaf and
Hachimi [1] have introduced generalized type I functions, for multiobjec-
tive programming problems, which are different from those defined in Kaul
et al. [13] and have obtained some duality results. In recent paper, Hachimi
and Aghezzaf [10] have defined generalized (F,α, ρ, d)-type I functions, a
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new class of functions that unifies several concepts of generalized type I
functions. They have obtained sufficient optimality conditions and duality
for multiobjective programming problems.

In this paper, we extend the concepts of (F,α, ρ, d)-type I and general-
ized (F,α, ρ, d)-type I functions to the continuous case and we use these
concepts to establish sufficient optimality conditions and mixed duality
results for multiobjective variational programming problems. The results
obtained in this paper are more general than those obtained in the
references [1, 5, 10, 13, 20, 17, 19, 24].

2. Notations and statement of the problem

Let I = [a, b] be a real interval and f = (f 1, . . . , f p) : I × R
n × R

n −→ R
p

and g= (g1, . . . , gq) :I×R
n×R

n−→R
q be continuously differentiable func-

tions. In order to consider f (t, x, ẋ), where x : I −→ R
n is differentiable

with derivative ẋ, denote the p× n matrices of first partial derivatives of
f with respect to x, ẋ by fx and fẋ , such that

f ix =
(
∂f i

∂x1
, . . . ,

∂f i

∂xn

)
and f iẋ =

(
∂f i

∂ẋ1
, . . . ,

∂f i

∂ẋn

)
, i=1,2, . . . , p.

Similarly, gx and gẋ denote the m× n matrices of first partial derivatives
of g with respect to x and ẋ. Let C(I,Rn) denote the space of continu-
ously differentiable functions x with norm ‖x‖ :=‖x‖∞ +‖Dx‖∞, where the
differential operator D is given by

u=Dx⇐⇒x(t)=x(a)+
∫ t

a

u(s)ds.

Therefore, D = d/dt except at discontinuities. We consider the following
multiobjective variational problem,

(MOP) Minimize
∫ b

a

f (t, x, ẋ)dt

=
(∫ b

a

f 1(t, x, ẋ)dt, . . . ,
∫ b

a

f p(t, x, ẋ)dt
)

subject to x(a)=α, x(b)=β, (1a)

g(t, x, ẋ)�0, t ∈ I. (1b)

Let A= {x ∈C(I,Rn), x(a)= α, x(b)= β,g(t, x, ẋ)� 0,∀t ∈ I } be the set of
feasible solutions for (MOP).
Notations Throughout this paper we use the following notations. Let P =
{1,2, . . . , p} and Q= {1,2, . . . , q} be the index sets, and let {J1, J2} be a
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partition of Q. For a vector v and vector-valued function g, vJ1 and gJ1

denote the subvectors composed from the components vi, i ∈ J1 and the
subvector-valued function composed from the components gi, i∈J1, respec-
tively. For a vector ū∈ R

p and function f = (f 1, . . . , f p),Uf denotes the
function (u1f

1, . . . , upf
p).

If x and y ∈R
n, then x�y⇔xi �yi, i=1, . . . , n; x�y⇔x�y and x 	=

y;x <y⇔ xi <yi, i= 1, . . . , n; xy or xty denotes the inner product. Let e
be the vector of R

p whose components are all ones. For ρ ∈ R
p and α ∈

R, eρ and αe denote the scalar
∑p

1 ρi and the vector whose components are
all α, respectively.

For the multiobjective variational programming problem (MOP), the
solution is defined in terms of proper efficient and (weak) efficient solution
in the following sense [4]:
DEFINITION 2.1. A point x̄ ∈ A is said to be an efficient solution for
problem (MOP) if there exists no other x ∈A such that

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt. (2)

DEFINITION 2.2. A point x̄∈A is said to be a weak efficient solution for
problem (MOP) if there exists no other x ∈A such that

∫ b

a

f (t, x, ẋ)dt <
∫ b

a

f (t, x̄, ˙̄x)dt. (3)

DEFINITION 2.3. A point x̄∈A is said to be a properly efficient solution
for problem (MOP) if there exists a scalar M>0 such that, ∀ i ∈P ,

∫ b

a

f i(t, x̄, ˙̄x)dt−
∫ b

a

f i(t, x, ẋ)dt

�M
(∫ b

a

f j (t, x, ẋ)dt−
∫ b

a

f j (t, x̄, ˙̄x)dt
)

(4a)

for some j such that, for x in A,
∫ b

a

f j (t, x, ẋ)dt >
∫ b

a

f j (t, x̄, ˙̄x)dt and
∫ b

a

f i(t, x, ẋ)dt <
∫ b

a

f i(t, x̄, ˙̄x)dt. (4b)

In the case of maximization, the signs of inequalities (2), (3), (4a) and
(4b) are reversed (i.e. we replace the signs �,< and > by �,> and <,
respectively).
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3. Generalized (F ,α,ρ,d)-type I functions

In this section, we will extend the concepts of (F,α, ρ, d)-type I and
generalized (F,α, ρ, d)-type I functions defined for multiobjective static
programming problems in [10] to the multi objective variational program-
ming problems. The following definition of sublinear functional was given
in [18]:

DEFINITION 3.1. A functional F : I × R
n × R

n × R
n × R

n × R
n −→ R is

sublinear with respect to the sixth variable if for any x, x̄ ∈C(I,Rn),

F(t, x, ẋ, x̄, ˙̄x;a1 +a2)�F(t, x, ẋ, x̄, ˙̄x;a1)+F(t, x, ẋ, x̄, ˙̄x;a1)

∀a1, a2 ∈R
n; (5a)

F(t, x, ẋ, x̄, ˙̄x;λa)=λF(t, x, ẋ, x̄, ˙̄x;a) ∀λ∈R, λ�0,

∀a∈R
n. (5b)

From (5b) it follows F(t, x, ẋ, x̄, ˙̄x;0)=0.
Let F be a sublinear functional and the functions (f = f 1, . . . , f p) :

I × R
n × R

n −→ R
p and h= (h1, . . . , hr) : I × R

n × R
n −→ R

r be continu-
ously differentiable with respect to each of their arguments. Let ρ= (ρ1, ρ2)

where ρ1 = (ρ1, . . . , ρp) ∈ R
p, ρ2 = (ρ1+p, . . . , ρr+p) ∈ R

r . Let α = (α1, α2)

where α1, α2 :C(I,Rn)×C(I,Rn)−→R+\{0}, and let d : I ×R
n×R

n−→R.
For the sake of simplicity, we will use the following notation. If F is a

sublinear functional, ψ : I × R
n × R

n −→ R and αi :C(I,Rn)×C(I,Rn)−→
R+\{0}, then

F(ψ, t, x, y, αi)=F
(
t, x, ẋ, y, ẏ;αi(x, y)

[
ψx(t, y, ẏ)− d

dt
ψẋ(t, y, ẏ)

])
(6)

We note that F(ψ, t, x, y, αi)= αi(x, y)F(ψ, t, x, y,1) where 1 : C(I,Rn)×
C(I,Rn)−→R such that for every x, y ∈R

n, 1(x, y)=1.
If f : I × R

n × R
n −→ R

p, then the symbol F(f, t, x, y, αi) denotes the
vector of components F(f 1, t, x, y, αi), . . . ,F(f p, t, x, y, αi).

The following remark will be used in the sequel.

Remark 3.1. Let f : I × R
n × R

n −→ R
p be continuously differentiable

function and α1 :C(I,Rn)×C(I,Rn)−→R+\{0}. Let ū∈R
p. Then etUf = ūf

and

etF(U,f, t, x, x̄, α1)=F(ūf, t, x, x̄, α1)=α1(x, x̄)F(ūf, t, x, x̄,1).

Remark 3.2. Let f : I × R
n × R

n −→ R
p and g : I × R

n × R
n −→ R

q be
continuously differentiable functions. Suppose that there exists differentiable
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function y :I −→R
n, vector u∈R

p and piecewise smooth function u :I −→R
q

such that for all t ∈ I ,

ufx(t, y, ẏ)+ v̄(t)gx(t, y, ẏ)= d
dt
(ūfẋ(t, y, ẏ)+ v̄(t)gẋ(t, y, ẏ)) ,

then
∫ b
a
F(uf +v(t)g, t, y, ẏ,1)dt=0.

Based upon the concept of the sublinear functional, we suggest the follow-
ing definitions:

DEFINITION 3.2. (f, h) is said to be (F,α, ρ, d)-type I at x̄ ∈C(I,Rn) if
for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt−
∫ b

a

f (t, x̄, ˙̄x)dt

�
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt−
∫ b

a

h(t, x̄, ˙̄x)dt

�
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt.

DEFINITION 3.3. (f, h) is said to be pseudoquasi (F,α, ρ, d)-type I at
x̄ ∈C(I,Rn) if for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt <
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt <0 (7a)

−
∫ b

a

h(t, x̄, ˙̄x)dt�0


⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (7b)

If in the above definition, x 	= x̄ and inequality (7a) is satisfied as
∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt <0

then we say that (f, h) is strictly pseudoquasi (F,α, ρ, d)-type I at x̄.
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DEFINITION 3.4. (f, h) is said to be weak strictly-pseudoquasi (F,α, ρ, d)-
type I at x̄ ∈C(I,Rn) if for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt <
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt <0

−
∫ b

a

h(t, x̄, ˙̄x)dt�0 
⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0.

DEFINITION 3.5. (f, h) is said to be strong pseudoquasi (F,α, ρ, d)-type
I at x̄ ∈C(I,Rn) if for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt ≤
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0 (8a)

−
∫ b

a

h(t, x̄, ˙̄x)dt�0


⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (8b)

If in the above definition, inequality (8a) is satisfied as

∫ b

a

f (t, x, ẋ)dt <
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0

then we say that (f, h) is weak pseudoquasi (F,α, ρ, d)-type I at x̄.

Remark 3.3. Note that for the scalar objective functions the class of pseud-
oquasi (F,α, ρ, d)-type I, the class of weak strictly-pseudoquasi
(F,α, ρ, d)-type I, and the class of strong pseudoquasi (F,α, ρ, d)-type I
functions coincide.

DEFINITION 3.6. (f, h) is said to be sub-strictly-pseudoquasi (F,α, ρ, d)-
type I at x̄ ∈C(I,Rn) if for all x ∈A we have
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∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0

−
∫ b

a

h(t, x̄, ˙̄x)dt�0 
⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0.

DEFINITION 3.7. (f, h) is said to be quasistrictly-pseudo (F,α, ρ, d)-type
I at x̄ ∈C(I,Rn) if for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0 (9a)

−
∫ b

a

h(t, x̄, ˙̄x)dt�0


⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (9b)

If in the above definition, inequality (9a) is satisfied as

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0

then we say that (f, h) is weak quasistrictly-pseudo (F,α, ρ, d)-type I at x̄.

DEFINITION 3.8. (f, h) is said to be weak quasisemi-pseudo (F,α, ρ, d)-
type I at x̄ ∈C(I,Rn) if for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0

−
∫ b

a

h(t, x̄, ˙̄x)dt�0 
⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0.
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DEFINITION 3.9. (f, h) is said to be weak strictly-pseudo (F,α, ρ, d)-
type I at x̄ ∈C(I,Rn) if for all x ∈A we have

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt


⇒
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt <0

−
∫ b

a

h(t, x̄, ˙̄x)dt�0 
⇒
∫ b

a

F(h, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt <0.

4. Sufficient optimality conditions

In this section, we establish several sufficient optimality conditions for a
feasible solution to be efficient, weak efficient or properly efficient for prob-
lem (MOP) in the form of the following theorems.

THEOREM 4.1. Suppose that there exists a feasible solution x̄ for (MOP)
and vector ū∈R

p and piecewise smooth function v̄ :I −→R
q such that for all

t ∈ I ,

ūfx(t, x̄, ˙̄x)+ v̄(t)gx(t, x̄, ˙̄x)= d
dt

(
ūfẋ(t, x̄, ˙̄x)+ v̄(t)gẋ(t, x̄, ˙̄x)

)
, (10a)

v̄(t)g(t, x̄, ˙̄x)=0, (10b)

ū>0, v̄(t)�0. (10c)

Further, if any of the following holds:

(a) (f (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ, d)-type I at x̄ with ūρ1α1(·, x̄)−1 +
ρ2α2(·, x̄)−1 �0;

(b) (Uf (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ, d)-type I at x̄ with etρ1α1(·, x̄)−1+
ρ2α2(·, x̄)−1 �0;

(c) (ūf (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ, d)-type I at x̄ with ρ1α1(·, x̄)−1 +
ρ2α2(·, x̄)−1 �0;

then x̄ is a properly efficient solution for (MOP).
Proof.(a) Since (f (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ, d)-type I at x̄ and ū>0,

it is easy to see that (uf (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ�, d)-type I at x̄ with
ρ�= (ūρ1, ρ2). So, the proof of this part follows similar lines as part (c).

(b) Because (Uf (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ, d)-type I at x̄, therefore,
for all x ∈A, we get
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∫ b

a

Uf (t, x, ẋ)dt−
∫ b

a

Uf (t, x̄, ˙̄x)dt

�
∫ b

a

F(Uf, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt (11a)

0�
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt (11b)

Multiplying (11a) with et and using Remark 2.1, we get
∫ b

a

ūf (t, x, ẋ)dt−
∫ b

a

ūf (t, x̄, ˙̄x)dt

�
∫ b

a

F(ūf, t, x, x̄, α1)dt+ etρ1
∫ b

a

d2(t, x, x̄)dt (12a)

0�
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt (12b)

which implies that (uf (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ∗, d)-type I at x̄ with
ρ∗= (etρ1, ρ2). Also, the proof of this part follows similar lines as part (c).

(c) Since (uf (t, ., .), v̄(t)g(t, ., .)) is (F,α, ρ, d)-type I at x̄, for any x ∈A,
we have

∫ b

a

ūf (t, x, ẋ)dt−
∫ b

a

ūf (t, x̄, ˙̄x)dt

�
∫ b

a

F(ūf, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt (13a)

0�
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt (13b)

Multiplying (13a) and (13b) with α1(x, x̄)−1 and α2(x, x̄)−1, respectively, we
summarize to get

α1(x, x̄)−1
[∫ b

a

ūf (t, x, ẋ)dt−
∫ b

a

ūf (t, x̄, ˙̄x)dt
]

�
∫ b

a

F(ūf, t, x, x̄,1)dt

+
∫ b

a

F(v̄(t)g, t, x, x̄,1)dt+ (ρ1α1(x, x̄)−1+ρ2α2(x, x̄)−1)

∫ b

a

d2(t, x, x̄)dt

�
∫ b

a

F(ūf + v̄(t)g, t, x, x̄,1)dt

+(ρ1α1(x, x̄)−1 +ρ2α2(x, x̄)−1)

∫ b

a

d2(t, x, x̄)dt

� (ρ1α1(x, x̄)−1 +ρ2α2(x, x̄)−1)

∫ b

a

d2(t, x, x̄)dt (14)
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where the above inequalities hold on account of Remark 3.2.
Because α1(x, x̄)−1>0 for all x ∈A hence (14) gives

∫ b

a

ūf (t, x, ẋ)dt�
∫ b

a

ūf (t, x̄, ˙̄x)dt, for all x ∈A (15)

which implies x̄ minimizes
∫ b
a
ūf (t, x, ẋ)dt over A with ū > 0. Hence, x̄ is

a properly efficient solution for (MOP) due to Theorem 1 of Bector and
Husain [4].

In the following theorem, we prove that the assumptions of the above the-
orem can be extended to include problems for which (ūf (t, ., .), v̄(t)g(t, ., .))
is pseudoquasi (F,α, ρ, d)-type I function.

THEOREM 4.2. Suppose that there exists a feasible solution x̄ for (MOP)
and vector ū ∈ R

p and piecewise smooth function v̄ : I −→ R
q such that

for all t ∈ I, (x̄, ū, v̄) satisfies conditions (10) of Theorem 3.1. Further,
if (ūf (t, ., .), v̄(t)g(t, ., .)) is pseudoquasi (F,α, ρ, d)-type I at x̄ with
ρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0, then x̄ is a proper efficient solution for (MOP).

Proof. From (10b), we have
∫ b

a

v̄(t)g(t, x̄, ˙̄x)dt=0.

Because (ūf (t, ., .), v̄(t)g(t, ., .)) is pseudoquasi (F,α, ρ, d)-type I at x̄, for
any x ∈A, we get

∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt�−ρ2
∫ b

a

d2(t, x, x̄)dt. (16)

Since α2(x, x̄)>0, (16) implies
∫ b

a

F(v̄(t)g, t, x, x̄,1)dt�−α2(x, x̄)−1ρ2
∫ b

a

d2(t, x, x̄)dt. (17)

Equation (17) along with (10a) gives
∫ b

a

F(ūf, t, x, x̄,1)dt�α2(x, x̄)−1ρ2
∫ b

a

d2(t, x, x̄)dt. (18)

hence∫ b

a

F(ūf, t, x, x̄,1)dt+α1(x, x̄)−1ρ1
∫ b

a

d2(t, x, x̄)dt

� (α1(x, x̄)−1ρ1 +α2(x, x̄)−1ρ2)

∫ b

a

d2(t, x, x̄)dt�0 (19)
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Multiplying (19) with α1(x, x̄), we obtain

∫ b

a

F(ūf, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0. (20)

Equation (20) along with the fact that (ūf (t, ., .), v̄(t)g(t, ., .)) is pseudoqu-
asi (F,α, ρ, d)-type I at x̄, gives (15). Hence, x̄ is a properly efficient solu-
tion for (MOP).

About the sufficient conditions for a point to be efficient solution for prob-
lem (MOP), we have the following two theorems.

THEOREM 4.3. Suppose that there exists a feasible solution x̄ for (MOP)
and vector ū∈R

p and piecewise smooth function v̄ :I −→R
p such that for all

t ∈ I, (x̄, ū, v̄) satisfies conditions (10) of Theorem 3.1. Further, if any of the
following holds:

(a) (f (t, ., .), v̄(t)g(t, ., .)) is strong pseudoquasi (F,α, ρ, d)-type I at x̄
with ūρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(b) (Uf (t, ., .), v̄(t)g(t, ., .)) is strong pseudoquasi (F,α, ρ, d)- type I at x̄
with etρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(c) (ūf (t, ., .), v̄(t)g(t, ., .)) is pseudoquasi (F,α, ρ, d)-type I at x̄ with
ρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0,

then x̄ is an efficient solution for (MOP).
Proof. Suppose that x̄ is not an efficient solution for (MOP). Then there

exists x ∈A such that
∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt (21a)

Multiplying (21a) with U and ū, respectively, we get

∫ b

a

Uf (t, x, ẋ)dt�
∫ b

a

Uf (t, x̄, ˙̄x)dt (21b)

∫ b

a

ūf (t, x, ẋ)dt <
∫ b

a

ūf (t, x̄, ˙̄x)dt (21c)

Since v̄(t)g(t, x̄, ˙̄x)=0 for all t ∈ I , we have

∫ b

a

v̄(t)g(t, x̄, ˙̄x)dt=0 (21d)
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By hypothesis (a) and using (21a) and (21d), we have

∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0 (22a)

∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (22b)

Multiplying (22a) and (22b) with ūα1(x, x̄)−1, and α2(x, x̄)−1, respectively,
we get

∫ b

a

F(ūf, t, x, x̄,1)dt <−ūα1(x, x̄)−1ρ1
∫ b

a

d2(t, x, x̄)dt (23a)

∫ b

a

F(v̄(t)g, t, x, x̄,1)dt�α2(x, x̄)−1ρ2
∫ b

a

d2(t, x, x̄)dt. (23b)

By the sublinearity of F , we summarize to get

∫ b

a

F(ūf + v̄(t)g, t, x, x̄,1)dt�
∫ b

a

F(ūf, t, x, x̄,1)dt

+
∫ b

a

F(v̄(t)g, t, x, x̄,1)dt <−ūρ1α1(x, x̄)−1

+ρ2α2(x, x̄)−1
∫ b

a

d2(t, x, x̄)dt�0, (24)

which contradicts (10a) because F(t, x, ẋ, x̄, ˙̄x;0)=0
By hypothesis (b) and using (21b) and (21d), we have

∫ b

a

F(Uf, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0 (25a)
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (25b)

Multiplying (25a) and (25b) with α1(x, x̄)−1et and α2(x, x̄)−1, respectively,
and using Remark 3.1, we get
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∫ b

a

F(ūf, t, x, x̄,1)dt <−α1(x, x̄)−1etρ1
∫ b

a

d2(t, x, x̄)dt (26a)
∫ b

a

F(v̄(t)g, t, x, x̄,1)dt�α2(x, x̄)−1ρ2
∫ b

a

d2(t, x, x̄)dt. (26b)

By the sublinearity of F , we summarize to get
∫ b

a

F(ūf + v̄(t)g, t, x, x̄,1)dt

<−(etρ1α1(x, x̄)−1 +ρ2α2(x, x̄)−1)

∫ b

a

d2(t, x, x̄)dt�0, (27)

which again contradicts (10a).
By hypothesis (c) and using (21c) and (21d), we have

∫ b

a

F(ūf, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt <0 (28a)
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (28b)

Multiplying (28a) and (28b) with α1(x, x̄)−1 and α2(x, x̄)−1, respectively,
and adding, we obtain

∫ b

a

F(ūf + v̄(t)g, t, x, x̄,1)dt

<−(ρ1α1(x, x̄)−1 +ρ2α2(x, x̄)−1)

∫ b

a

d2(t, x, x̄)dt�0, (29)

which again contradicts (10a).

An interesting case not covered by Theorem 4.3 above is the case where
(x̄, ū, v̄) is a solution of (10) but the requirement that ū > 0 is not made.
This is given by the following two theorems, where instead of requiring that
ū>0, we enforce other convexity conditions on (f (t, ., .), v̄(t)g(t, ., .)).

THEOREM 4.4. Suppose that there exists a feasible solution x̄ for (MOP)
and vector ū∈R

p and piecewise smooth function v̄ :I −→R
q such that for all

t ∈ I ,

ūfx(t, x̄, ˙̄x)+ v̄(t)gx(t, x̄, ˙̄x)= d
dt

(
ūfẋ(t, x̄, ˙̄x)+ v̄(t)gẋ(t, x̄, ˙̄x)

)
, (30a)

v̄(t)g(t, x̄, ˙̄x)=0, (30b)

ū�0, v̄(t)�0. (30c)



204 M. HACHIMI AND B. AGHEZZAF

Further, if any of the following holds:

(a) (f (t, ., .), v̄(t)g(t, ., .)) is weak strictly-pseudoquasi (F,α, ρ, d)-type I
at x̄ with ūρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(b) (f (t, ., .), v̄(t)g(t, ., .)) is weak quasisemi-pseudo (F,α, ρ, d)-type I at
x̄ with ūρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(c) (Uf (t, ., .), v̄(t)g(t, ., .)) is sub-strictly pseudoquasi (F,α, ρ, d)- type I
at x̄ with etρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(d) (ūf (t, ., .), v̄(t)g(t, ., .)) is strictly pseudoquasi (F,α, ρ, d)- type I at x̄
with ρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

then x̄ is an efficient solution for (MOP).
Proof. Suppose that x̄ is not an efficient solution for (MOP). Then there

exists x ∈A such that (21a) holds. Multiplying (21a) with U and ū, respec-
tively, we get

∫ b

a

Uf (t, x, ẋ)dt�
∫ b

a

Uf (t, x̄, ˙̄x)dt (31a)
∫ b

a

ūf (t, x, ẋ)dt�
∫ b

a

ūf (t, x̄, ˙̄x)dt (31b)

By hypothesis (a) and using (21a) and (21d), we have
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt <0 (32a)
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt�0. (32b)

Multiplying (32a) and (32b) with ūα1(x, x̄)−1 and α2(x, x̄)−1, respectively,
we get (23). By the sublinearity of F , we summarize to get (24), which con-
tradicts (10a).

By hypothesis (b) and using (21a) and (21d), we have
∫ b

a

F(f, t, x, x̄, α1)dt+ρ1
∫ b

a

d2(t, x, x̄)dt�0 (33a)
∫ b

a

F(v̄(t)g, t, x, x̄, α2)dt+ρ2
∫ b

a

d2(t, x, x̄)dt <0. (33b)

Multiplying (33a) and (33b) with ūα1(x, x̄)−1 and α2(x, x̄)−1, respectively,
and adding, we obtain (24) which contradicts (10a).
By hypothesis (c) and using (31a) and (21d), we have (25) and now the
proof follows exactly similar lines as that of part (b) of theorem 4.3.
By hypothesis (d) and using (31b) and (21d), we have (28) and now the
proof follows exactly similar lines as that of part (c) of theorem 4.3.
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It is obvious that the Theorems 4.3 and 4.4 hold for weak efficient solu-
tions too. However, it is important to know that the convexity assumptions
of Theorems 4.3 and 4.4 can be weakened for weak efficient solutions.

THEOREM 4.5. Suppose that there exists a feasible solution x̄ for (MOP)
and vector ū∈R

p and piecewise smooth function v̄ :I −→R
q such that for all

t ∈ I, (x̄, ū, v̄) satisfies conditions (10) of Theorem 4.1. Further, if any of the
following holds:

(a) (f (t, ., .), v̄(t)g(t, ., .)) is weak pseudoquasi (F,α, ρ, d)-type I at x̄ with
ūρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(b) (Uf (t, ., .), v̄(t)g(t, ., .)) is weak pseudoquasi (F,α, ρ, d)-type I at x̄
with etρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

then x̄ is a weak efficient solution for (MOP).
Proof. Suppose that x̄ is not a weak efficient solution for (MOP). Then

there exists x ∈A such that

∫ b

a

f (t, x, ẋ)dt <
∫ b

a

f (t, x̄, ˙̄x)dt (34a)

Multiplying (34a) with U , we get

∫ b

a

Uf (t, x, ẋ)dt <
∫ b

a

Uf (t, x̄, ˙̄x)dt (34b)

By hypothesis (a) and using (34a) and (21d), we obtain (22) and the rest
follows exactly similar lines as that of part (a) of theorem 4.3.

By hypothesis (b) and using (34b) and (21d), we obtain (25) and the rest
follows exactly similar lines as that of part (b) of theorem 4.3.

THEOREM 4.6. Suppose that there exists a feasible solution x̄ for (MOP)
and vector ū∈R

p and piecewise smooth function v̄ :I −→R
q such that for all

t ∈ I, (x̄, ū, v̄) satisfies conditions (30) of Theorem 4.3. Further, if any of the
following holds:

(a) (f (t, ., .), v̄(t)g(t, ., .)) is pseudoquasi (F,α, ρ, d)-type I at x̄ with
ūρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

(b) (Uf (t, ., .), v̄(t)g(t, ., .)) is strong pseudoquasi (F,α, ρ, d)-type I at x̄
with etρ1α1(·, x̄)−1 +ρ2α2(·, x̄)−1 �0;

then x̄ is a weak efficient solution for (MOP).
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Proof. Suppose that x̄ is not an efficient solution for (MOP). Then there
exists x ∈A such that (34a) holds. Multiplying (34a) with U , we get (21b).
By hypothesis (a) and using (34a) and (21d), we obtain (32) and the rest
follows exactly similar lines as that of part (a) of theorem 4.4.
By hypothesis (b) and using (21b) and (21d), we obtain (25) and the rest
follows exactly similar lines as that of part (b) of theorem 4.3.

5. Mixed type duality

The aim of this section is to use the concepts of efficiency, weak efficiency
and proper efficiency to formulate duality relationships between the mul-
tiobjective variational problem (MOP) and the dual multiobjective varia-
tional problem (XMOP) defined as [19]:

(XMOP) Maximize
∫ b

a

{f (t, y, ẏ)+ [vJ1(t)g
J1(t, y, ẏ)]e} dt

subject to y(a)=α, y(b)=β, (35a)

ufx(t, y, ẏ)+v(t)gx(t, y, ẏ)= d
dt
(ufẋ(t, y, ẏ)

+v(t)gẋ(t, y, ẏ)) , t ∈ I, (35b)

vJ2(t)g
J2(t, y, ẏ)�0; t ∈ I, (35c)

v(t)�0; t ∈ I, (35d)

u�0, ute=1. (35e)

We note that we get a Mond-Weir dual for J1 =∅ and a Wolfe dual for
J2 =∅ in (XMOP), respectively.

5.1. duality and proper efficiency

Now, we use the concept of proper efficiency to formulate duality relation-
ships between (MOP) and (XMOP). Before proceeding to establish duality
results, we state, in the form of the following proposition, the continuous
version of Theorem 4.1 of [9], which will be needed in the proof of the
strong duality theorem.

PROPOSITION 5.1. Let x̄ be a properly efficient for (MOP) at which the
Kuhn–Tucker constraint qualification is satisfied. Then there exist ū∈R

p and
piecewise smooth function v̄ : I −→R

q such that for all t ∈ I, (x̄, ū, v̄) satisfies

ūfx(t, x̄, ˙̄x)+ v̄(t)gx(t, x̄, ˙̄x)= d
dt

(
ūfẋ(t, x̄, ˙̄x)+ v̄(t)gẋ(t, x̄, ˙̄x)

)
, (36a)

v̄(t)g(t, x̄, ˙̄x)=0, (36b)

ū>0; v̄(t)�0, (36c)

ūt e=1. (36d)
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THEOREM 5.1. (Weak Duality). Assume that for all feasible x for (MOP)
and all feasible (y, u, v) for (XMOP), any of the following holds:

(a) (f (t, ., .)+ vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is (F,α, ρ, d)-type I at y with
ūρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(b) (uf (t, ., .)+ vJ1g
J1(t, ., .), vJ2g

J2(t, ., .)) is (F,α, ρ, d)- type I at y with
ρ1α1(·, y)−1 +ρ2α2(., y)−1 �0.

Then the following hold

∫ b

a

{uf (t, y, ẏ)+vJ1(t)g
J1(t, y, ẏ)}dt�

∫ b

a

uf (t, x, ẋ)dt (37)

Proof. (a) Since (f (t, ., .) + vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is (F,α, ρ, d)-
type I at x̄, u� 0 and ue= 1, then (uf (t, ., .)+ vJ1g

J1(t, ., .))e, vJ2g
J2(t, ., .))

is (F,α, ρ�, d)-type I at x̄ with ρ�= (ūρ1, ρ2). So, the proof of this part fol-
lows similar lines as part (b).
(b) Since F is a sublinear functional, from equation (35b) and (35c), we
have

∫ b

a

F(uf +v(t)g, t, x, y,1)dt=0 (38a)

−
∫ b

a

vJ2(t)g
J2(t, y, ẏ)dt�0 (38b)

Using again the sublinearity of F together with (38a), we obtain

∫ b

a

F(uf +vJ1(t)g
J1, t, x, y,1)dt

�−
∫ b

a

F(vJ2(t)g
J2(t, x, y,1)dt (38c)

Since (uf (t, ., .)+vJ1g
J1(t, ., .), vJ2g

J2(t, ., .)) is (F,α, ρ, d)-type I at y, (38b)
implies

∫ b

a

F(vJ2(t)g
J2, t, x, y,1)dt+α2(x, y)−1ρ2

∫ b

a

d(t, x, y, )dt�0 (39)

Because α1(x, y)−1ρ1 +α2(x, y)−1ρ2 �0, inequality (38c) with (39) implies

∫ b

a

F(uf +vJ1(t)g
J1, t, x, y,1)dt+α1(x, y)−1ρ2

∫ b

a

d(t, x, y, )dt�0.

(40)
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Because (uf (t, ., .), vJ1g
J1(t, ., .), vJ2g

J2(t, ., .)) is (F,α, ρ, d)-type I at y,
inequality (40) implies

∫ b

a

{uf (t, x, ẋ)+vJ1(t)g
J1(t, x, ẋ)}dt�

∫ b

a

{uf (t, y, ẏ)+vJ1(t)g
J1(t, y, ẏ)}dt

(41)

Since x ∈A and v(t)�0 for all t ∈ I , we get

∫ b

a

vJ1(t)g
J1(t, x, ẋ)dt�0. (42)

Now form inequalities (41) and (42), we obtain

∫ b

a

{uf (t, y, ẏ)+vJ1(t)g
J1(t, y, ẏ)}dt�

∫ b

a

uf (t, x, ẋ)dt. �

THEOREM 5.2. (Weak Duality). Assume that for all feasible x for (MOP)
and all feasible (y, u, v) for (XMOP), (uf (t, ., .)+vJ1g

J1(t, ., .), vJ2g
J2(t, ., .))

is pseudoquasi (F,α, ρ, d)- type I at y with ρ1α1(·, y)−1 + ρ2α2(·, y)−1 � 0.
Then inequality (37) hold.

Proof. The proof is similar to that of Theorem 5.1; this can be seen by
replacing (F,α, ρ, d)- type I by pseudoquasi (F,α, ρ, d)-type I in the above
proof.

COROLLARY 5.1. Let (ȳ, ū, v̄) be a feasible solution for (XMOP) with
ū > 0. Assume that v̄J1(t)g

J1(t, ȳ, ˙̄y)= 0, t ∈ I , and assume that ȳ is feasi-
ble for (MOP). If weak duality (any of Theorem 5.1 or 5.2) holds between
(MOP) and (XMOP). Then, ȳ is a properly efficient solution for (MOP) and
(ȳ, ū, v̄) is a properly efficient solution for (XMOP).

Proof. Proceeding on the lines similar to that of [4, Lemma 1].

THEOREM 5.3. (Strong Duality). Let x̄ be a properly efficient solution for
(MOP) at which the Kuhn–Tucker constraint qualification is satisfied. Then
there exist ū ∈ R

p and a piecewise smooth v̄ : I −→ R
q such that (x̄, ū, v̄)

is feasible for (XMOP), along with the conditions v̄J1(t)g
J1(t, x̄, ˙̄x)=0, t ∈ I ,

and ū> 0. If also weak duality (Theorem 5.1 or 5.2) holds between (MOP)
and (XMOP), then (x̄, ū, v̄) is a properly efficient solution for (XMOP).

Proof. Since x̄ is a properly efficient solution of (MOP) at which the
Kuhn-Tucker constraint qualification is satisfied, by Proposition 5.1, there
exist ū∈R

p and a piecewise smooth v̄ : I −→R
q such that (x̄, ū, v̄) satisfies

(36). Thus (x̄, ū, v̄) is feasible for (XMOP) with ū>0. Proper efficiency of
(x̄, ū, v̄) for (XMOP) now follows from Corollary 5.1.
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5.2. duality and efficiency

Here, we use the concept of efficiency to formulate duality relation-
ships between (MOP) and (XMOP). Before proceeding to establish duality
results, we state, in the form of the following proposition, the continuous
version of Theorem 3.2 of [23], which will be needed in the proof of the
strong duality theorem.

PROPOSITION 5.2. Let x̄ be (weak) efficient for (MOP) at which the
Kuhn–Tucker constraint qualification is satisfied. Then there exist ū∈R

p and
piecewise smooth function v̄ :I −→R

q such that, for all t ∈I, (x̄, ū, v̄) satisfies

ūfx(t, x̄, ˙̄x)+ v̄(t)gx(t, x̄, ˙̄x)= d
dt

(
ūfẋ(t, x̄, ˙̄x)+ v̄(t)gẋ(t, x̄, ˙̄x)

)
, (43a)

v̄(t)g(t, x̄, ˙̄x)=0, (43b)

ū�0, v̄(t)�0, (43c)

ūt e=1. (43d)

THEOREM 5.4. (Weak Duality). Assume that for all feasible x for (MOP)
and all feasible (y, u, v) for (XMOP), any of the following holds:

(a) u>0, and (f (t, ., .)+vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is strong pseudoquasi
(F,α, ρ, d)-type I at y with uρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(b) u > 0, and (uf (t, ., .) + vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is pseudoquasi
(F,α, ρ, d)-type I at y with ρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0.

Then the following cannot hold

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

{f (t, y, ẏ)+ [vJ1(t)g
J1(t, y, ẏ)]e} dt (44)

Proof. Suppose contrary to the result of the theorem that (44) holds.
Since x is feasible for (MOP) and v(t)�0 for all t ∈ I , (44) implies

∫ b

a

{f (t, x, ẋ)+ [vJ1(t)g
J1(t, x, ẋ)]e}dt�

∫ b

a

{f (t, y, ẏ)
+[vJ1(t)g

J1(t, y, ẏ)]e}dt (45a)

Multiplying (45a) with u>0, we get

∫ b

a

{uf (t, x, ẋ)+ [vJ1(t)g
J1(t, x, ẋ)]}dt <

∫ b

a

{uf (t, y, ẏ)
+[vJ1(t)g

J1(t, y, ẏ)]}dt (45b)
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Since (y, u, v) is feasible for (XMOP), it follows that

−
∫ b

a

vJ2(t)g
J2(t, y, ẏ)dt�0 (45c)

By hypothesis (a), using (45a) and (45c),we have

∫ b

a

F(f (t, ., .)+vJ1(t)g
J1(t, ., .)e, t, x, y, α1)dt�−ρ1

∫ b

a

d2(t, x, y)dt

(46a)∫ b

a

F(vJ2(t)g
J2 t, x, y, α2)dt�−ρ2

∫ b

a

d2(t, x, y)dt. (46b)

Multiplying (46a) and (46b) with uα1(x, y)−1 and α2(x, y)−1, respectively,
by sublinearity of F , we obtain

∫ b

a

F(uf +v(t)g, t, x, y,1)dt�
∫ b

a

F(uf +vJ1(t)g
J1, t, x, y,1)dt

+
∫ b

a

F(vJ2(t)g
J2, t, x, y,1)dt

<−(uρ1α1(x, y)−1

+ρ2α2(x, y)−1)

∫ b

a

d2(t, x, y)dt (47)

which contradicts the duality constraint (35b) on account of Remark 3.2.
Hence, (44) cannot hold.
When hypothesis (b) holds, inequalities (45b) and (45c) implies

∫ b

a

F(uf +vJ1(t)g
J1, t, x, y, α1)dt <−ρ1

∫ b

a

d2(t, x, y)dt (48a)
∫ b

a

F(vJ2(t)g
J2, t, x, y, α2)dt�−ρ2

∫ b

a

d2(t, x, y)dt. (48b)

Multiplying (48a) and (48b) with α1(x, y)−1 and α2(x, y)−1, respectively, by
sublinearity of F , we obtain

∫ b

a

F(uf +v(t)g, t, x, y,1)dt <−(ρ1α1(x, y)−1

+ρ2α2(x, y)−1)

∫ b

a

d2(t, x, y)dt (49)

which again contradicts the duality constraint (35b).
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THEOREM 5.5. (Weak duality). Assume that for all feasible x for (MOP)
and all feasible (y, u, v) for (XMOP), any of the following holds:

(a) (f (t, ., .)+vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is weak strictly-pseudoquasi
(F,α, ρ, d)-type I at y with uρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(b) (uf (t, ., .)+vJ1g
J1(t, ., .), vJ2g

J2(t, ., .)) is strictly pseudoquasi
(F,α, ρ, d)-type I at y with ρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(c) (f (t, ., .)+vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is weak quasistrictly-pseudo
(F,α, ρ, d)-type I at y with uρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(d) (uf (t, ., .)+vJ1g
J1(t, ., .), vJ2g

J2(t, ., .)) is quasistrictly-pseudo
(F,α, ρ, d)-type I at y with ρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0.

Then inequality (44) cannot hold.
Proof. Suppose contrary to the result of the theorem that (44) holds.

Since x is feasible for (MOP) and v(t)� 0 for all t ∈ I , (44) implies (45a).
Since (y, u, v) is feasible for (XMOP), we have (45c). Multiplying (45a)
with u�0, we get

∫ b

a

{uf (t, x, ẋ)+ [vJ1(t)g
J1(t, x, ẋ)]} dt�

∫ b

a

{uf (t, y, ẏ)
+[vJ1(t)g

J1(t, y, ẏ)]} dt (50)

Now if hypothesis (a) holds, using (45a) and (45c), we get
∫ b

a

F(f (t, ., .)+vJ1(t)g
J1(t, ., .)e, t, x, y, α1)dt<−ρ1

∫ b

a

d2(t, x, y)dt

(51a)

∫ b

a

F(vJ2(t)g
J2, t, x, y, α2)dt�−ρ2

∫ b

a

d2(t, x, y)dt. (51b)

Multiplying (51a) and (51b) with uα1(x, y)−1 and α2(x, y)−1, respectively,
using sublinearity of F , we get (47) which contradicts (35b).
Now by hypothesis (b) and, using (50) and (45c), we get (48) and then we
obtain (49) again contradicting (35b).

If hypothesis (c) holds, then (45a) and (45c) implies
∫ b

a

F(f (t, ., .)+vJ1(t)g
J1(t, ., .)e, t, x, y, α1)dt (52a)

�−ρ1
∫ b

a

d2(t, x, y)dt
∫ b

a

F(vJ2(t)g
J2, t, x, y, α2)dt <−ρ2

∫ b

a

d2(t, x, y)dt. (52b)
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Multiplying (52a) and (52b) with uα1(x, y)−1 and α2(x, y)−1, respectively,
using sublinearity of F , we get (47) which contradicts (35b).

Now by hypothesis (d), (50) and (45c) leads to
∫ b

a

F(uf +vJ1(t)g
J1, t, x, y, α1)dt�−ρ1

∫ b

a

d2(t, x, y)dt (53a)
∫ b

a

F(vJ2(t)g
J2, t, x, y, α2)dt <−ρ2

∫ b

a

d2(t, x, y)dt. (53b)

Multiplying (53a) and (53b) with α1(x, y)−1 and α2(x, y)−1, respectively,
using sublinearity of F , we get (49) which again contradicts (35b).

COROLLARY 5.2. Let (ȳ, ū, v̄) be a feasible solution for problem (XMOP).
Assume that v̄J1(t)g

J1(t, ȳ, ˙̄y)= 0, for all t ∈ I and assume that ȳ is feasi-
ble for (MOP). If weak duality (any of Theorem 5.4 or 5.5) holds between
(MOP) and (XMOP). Then, ȳ is an efficient solution for (MOP) and
(ȳ, ū, v̄) is an efficient solution for (XMOP).

Proof. Suppose that ȳ is not an efficient solution for (MOP), then there
exists feasible x for (MOP) such that

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, ȳ, ˙̄y)dt

and since v̄J1(t)g
J1(t, ȳ, ˙̄y)=0, for all t ∈ [a, b], we get

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

{f (t, ȳ, ˙̄y)+ [v̄J1(t)g
J1(t, ȳ, ˙̄y)]e}dt

Since (ȳ, ū, v̄) is feasible for (XMOP) and x is feasible for (MOP), this
inequality contradicts the weak duality (Theorem 5.4 or 5.5).

Also suppose that (ȳ, ū, v̄) is not an efficient solution for (XMOP). Then
there exists a feasible solution (y, u, v) for (XMOP) such that

∫ b

a

{f (t, ȳ, ˙̄y)+ [v̄J1(t)g
J1(t, ȳ, ˙̄y)]e}dt �

∫ b

a

{f (t, y, ẏ)
+ [
vJ1(t)g

J1(t, y, ẏ)
]
e}dt

(54)

and since v̄J1(t)g
J1(t, ȳ, ˙̄y)=0, for all t ∈ [a, b], (54) reduced to

∫ b

a

f (t, ȳ, ˙̄y)dt�
∫ b

a

{f (t, y, ẏ)+ [
vJ1(t)g

J1(t, y, ẏ)
]
e}dt (55)

Since ȳ is feasible for (MOP), this inequality contradicts weak duality
(Theorem 5.4 or 5.5). Therefore ȳ and (ȳ, ū, v̄) are efficient solutions for
their respective programs.
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THEOREM 5.6. (Strong duality). Let x̄ be an efficient solution for (MOP)
at which the Khun Tucker qualification constraint is satisfied, then there
exist ū ∈ R

p and piecewise smooth function v̄ : I −→ R
q such that (x̄, ū, v̄)

is feasible for (XMOP) with v̄J1(t)g
J1(t, x̄, ˙̄x)= 0, t ∈ I . If also weak duality

(Theorem 5.4 or 5.5) holds between (MOP) and (XMOP), then (x̄, ū, v̄) is
an efficient solution for (XMOP).

Proof. Since x̄ is an efficient solution for (MOP) at which the Kuhn-
Tucker constraint qualification is satisfied, by Proposition 5.2, there exist
ū∈R

p and a piecewise smooth v̄ : I −→R
q such that (x̄, ū, v̄) satisfies (43).

Thus (x̄, ū, v̄) is feasible for (XMOP). Efficiency of (x̄, ū, v̄) for (XMOP)
now follows from Corollary 5.2.

THEOREM 5.7. (Strict converse duality). Let x̄ be feasible solution for
problem (MOP) and (ȳ, ū, v̄) be feasible solution for problem (XMOP) such
that ∫ b

a

ūf (t, x̄, ˙̄x)dt=
∫ b

a

{ūf (t, ȳ, ˙̄y)+ v̄J1(t)g
J1(t, ȳ, ˙̄y)} dt (56)

If condition (b) or (d) of Theorem 4.5 is satisfied for x̄ and (ȳ, ū, v̄), then
x̄= ȳ.

Proof. We assume x̄ 	= ȳ and exhibit a contradiction. Since x̄ and (ȳ, ū, v̄)
are feasible for (MOP) and (XMOP), respectively, then v̄(t)�0, g(t, x̄, ˙̄x)�
0 for all t ∈ I and, (56) and (35c) yield

∫ b

a

{ūf (t, x̄, ˙̄x)+ v̄J1(t)g
J1(t, x̄, ˙̄x)}dt�

∫ b

a

{ūf (t, ȳ, ˙̄y)
+v̄J1(t)g

J1(t, ȳ, ˙̄y)} dt (57a)

−
∫ b

a

v̄J2(t)gJ2(t, ȳ, ˙̄y)dt�0 (57b)

Condition (b) of Theorem 5.5 with (57), gives
∫ b

a

F(ūf + v̄J1(t)g
J1, t, x̄, ȳ, α1)dt <−ρ1

∫ b

a

d2(t, x̄, ȳ)dt (58a)
∫ b

a

F(v̄J2(t)g
J2, t, x̄, ȳ, α2)dt�−ρ2

∫ b

a

d2(t, x̄, ȳ)dt. (58b)

Condition (d) of Theorem 5.5 with (57), gives
∫ b

a

F(ūf + v̄J1(t)g
J1, t, x̄, ȳ, α1)dt�−ρ1

∫ b

a

d2(t, x̄, ȳ)dt (59a)
∫ b

a

F(v̄J2(t)g
J2, t, x̄, ȳ, α2)dt <−ρ2

∫ b

a

d2(t, x̄, ȳ)dt. (59b)
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By sublinearity of F , both systems (58) and (59) give

∫ b

a

F(ūf + v̄(t)g, t, x̄, ȳ,1)dt <−(ρ1α1(x̄, ȳ)−1

+ρ2α2(x̄, ȳ)−1)

∫ b

a

d2(t, x̄, ȳ)dt (60)

which contradicts the duality constraint (35b).

THEOREM 5.8. (Strict converse duality). Let x̄ be feasible solution for
problem (MOP) and (ȳ, ū, v̄) be feasible solution for problem (XMOP) such
that

∫ b

a

f (t, x̄, ˙̄x)dt=
∫ b

a

{f (t, ȳ, ẏ)+ v̄J1(t)g
J1(t, ȳ, ˙̄y)e}dt (61)

For each feasible x for (MOP) and (y, u, v,p) for (XMOP),

(a) if weak duality (any of Theorem 5.4 or 5.5) holds at ȳ, then x̄ is effi-
cient for (MOP);

(b) if weak duality (any of Theorem 5.4 or 5.5) holds at y, then (ȳ, ū, v̄)
is efficient for (XMOP).

Proof. (a) Suppose that x̄ is not an efficient solution for (MOP). Then,
there exist a feasible x for (MOP) such that

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

f (t, x̄, ˙̄x)dt

using condition (61) we get

∫ b

a

f (t, x, ẋ)dt�
∫ b

a

{f (t, ȳ, ˙̄y)+ v̄J1(t)g
J1(t, ȳ, ˙̄y)e}dt (62)

which contradicts the weak duality for feasible solutions x for (MOP) and
(ȳ, ū, v̄) for (XMOP). Thus, x̄ is efficient for (MOP).

(b) Let as assume on the contrary that (ȳ, ū, v̄) is not an efficient solu-
tion for (XMOP). Then, there exist a feasible (y, u, v) for (XMOP) such
that

∫ b

a

{f (t, ȳ, ˙̄y)+ v̄J1(t)g
J1(t, ȳ, ˙̄y)e}dt�

∫ b

a

{f (t, y, ẏ)
+vJ1(t)g

J1(t, y, ẏ)e}dt. (63)
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Using condition (61) we get
∫ b

a

f (t, x̄, ˙̄x)dt�
∫ b

a

{f (t, y, ẏ)+vJ1(t)g
J1(t, y, ẏ)e}dt (64)

which contradicts the weak duality for feasible solutions x̄ for (MOP) and
(y, u, v) for (XMOP). Thus, (ȳ, ū, v̄) is efficient for (XMOP).

5.3. duality and weak efficiency

In this section, we use the concept of weak efficiency to formulate duality
relationships between (MOP) and (XMOP).

THEOREM 5.9. (Weak duality). Assume that for all feasible x for (MOP)
and all feasible (y, u, v) for (XMOP), any of the following holds:

(a) u> 0, and (f (t, ., .)+ vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., .)) is weak pseudoquasi
(F,α, ρ, d)-type I at y with uρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(b) (f (t, ·, ·)+vJ1g
J1(t, ., .)e, vJ2g

J2(t, ., )) is pseudoquasi (F,α, ρ, d)-type I
at y with uρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0;

(c) (uf (t, ., .) + vJ1g
J1(t, ., .), vJ2g

J2(t, ., .)) is pseudoquasi (F,α, ρ, d)-
type I at y with ρ1α1(·, y)−1 +ρ2α2(·, y)−1 �0.

Then the following cannot hold
∫ b

a

f (t, x, ẋ) dt <
∫ b

a

{f (t, y, ẏ)+ [vJ1(t)g
J1(t, y, ẏ)]e}dt (65)

Proof. Suppose contrary to the result of the theorem that (65) holds.
Since x is feasible for (MOP) and v(t)�0 for all t ∈ I , (65) implies

∫ b

a

{f (t, x, ẋ)+ [vJ1(t)g
J1(t, x, ẋ)]e}dt <

∫ b

a

{f (t, y, ẏ)
+[vJ1(t)g

J1(t, y, ẏ)]e}dt (66)

Multiplying (66) with u�0, we get
∫ b

a

{uf (t, x, ẋ)+ [vJ1(t)g
J1(t, x, ẋ)]}dt <

∫ b

a

{uf (t, y, ẏ) (67)

+[vJ1(t)g
J1(t, y, ẏ)]}dt

Since (y, u, v) is feasible for (XMOP), we have (45c).
Now by hypothesis (a) and, from (66) and (45c) we get (46), then we obtain
(47) which contradicts (35b).

Now by hypothesis (b) and, from (66) and (45c) we get (51), then we
obtain (47) which contradicts (35b).
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Now by hypothesis (c) and, from (67) and (45c) we get (48), then we
obtain (49) which contradicts (35b).

COROLLARY 5.3. Let (ȳ, ū, v̄) be a feasible solution for problem (XMOP).
Assume that v̄J1(t)g

J1(t, ȳ, ˙̄y) = 0, t ∈ I , and assume that ȳ is feasible for
(MOP). If weak duality (Theorem 5.9) holds between (MOP) and (XMOP).
Then, ȳ is a weak efficient solution for (MOP) and (ȳ, ū, v̄) is a weak
efficient solution for (XMOP).

Proof. Suppose that ȳ is not a weak efficient solution for (MOP), then
there exists feasible x for (MOP) such that

∫ b

a

f (t, x, ẋ)dt<
∫ b

a

f (t, ȳ, ˙̄y)dt

and since v̄J1(t)g
J1(t, ȳ, ˙̄y)=0, for all t ∈ I , we get

∫ b

a

f (t, x, ẋ)dt <
∫ b

a

{f (t, ȳ, ˙̄y)+ [v̄J1(t)g
J1(t, ȳ, ˙̄y)]e}dt

Since (ȳ, ū, v̄) is feasible for (XMOP) and x is feasible for (MOP), this
inequality contradicts the weak duality (Theorem 5.9).

Also suppose that (ȳ, ū, v̄) is not a weak efficient solution for (XMOP).
Then there exists a feasible solution (y, u, v) for (XMOP) such that

∫ b

a

{f (t, ȳ, ˙̄y)+ [v̄J1(t)g
J1(t, ȳ, ˙̄y)]e}dt <

∫ b

a

{f (t, y, ẏ) (68)

+ [vJ1(t)g
J1(t, y, ẏ)]e}dt

and since v̄J1(t)g
J1(t, ȳ, ˙̄y)=0, for all t ∈ I , (68) reduced to

∫ b

a

f (t, ȳ, ˙̄y)dt <
∫ b

a

{f (t, y, ẏ)+ [vJ1(t)g
J1(t, y, ẏ)]e}dt

Since ȳ is feasible for (MOP), this inequality contradicts weak duality
(Theorem 5.9). Therefore ȳ and (ȳ, ū, v̄) are weak efficient solutions for
their respective programs.

THEOREM 5.10. (Strong duality). Let x̄ be a weak efficient solution for
(MOP) at which the Khun Tucker qualification constraint is satisfied, then
there exist ū ∈ R

p and piecewise smooth function v̄ : I −→ R
q such that

(x̄, ū, v̄) is feasible for (XMOP) with v̄J1(t)g
J1(t, x̄, ˙̄x)=0, t ∈ I . If also weak

duality (Theorem 5.9) holds between (MOP) and (XMOP), then (x̄, ū, v̄) is
a weak efficient solution for (XMOP).
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Proof. Since x̄ is a weak efficient solution of (MOP) at which the Kuhn–
Tucker constraint qualification is satisfied, by Proposition 5.2, there exist
ū ∈ R

p and a piecewise smooth v̄ : I −→ R
q such that (x̄, ū, v̄) satisfies

(43). Thus (x̄, ū, v̄) is feasible for (XMOP). Weak efficiency of (x̄, ū, v̄) for
(XMOP) now follows from Corollary 5.3.
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